Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(3): 1523-1532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966429

RESUMO

BACKGROUND: Brome grass (Bromus diandrus Roth) is prevalent in the southern and western cropping regions of Australia, where it causes significant economic damage. A targeted herbicide resistance survey was conducted in 2020 by collecting brome grass populations from 40 farms in Western Australia and subjecting these samples to comprehensive herbicide screening. One sample (population 172-20), from a field that had received 12 applications of clethodim over 20 years of continuous cropping, was found to be highly resistant to the acetyl-CoA carboxylase (ACCase)-inhibiting herbicides clethodim and quizalofop, and so the molecular basis of resistance was investigated. RESULTS: All 31 individuals examined from population 172-20 carried the same resistance-endowing point mutation causing an aspartate-to-glycine substitution at position 2078 in the translated ACCase protein sequence. A wild-type susceptible population and the resistant population had similar expression levels of plastidic ACCase genes. The level of resistance to quizalofop, either standalone or in mixture with clethodim, in population 172-20 was lower under cooler growing conditions. CONCLUSION: Target-site resistance to ACCase-inhibiting herbicides, conferred by one ACCase mutation, was selected in all tested brome plants infesting a field with a history of repeated clethodim use. This mutation appears to have been fixed in the infesting population. Notably, clethodim resistance in this population was not detected by the farmer, and a high future incidence of quizalofop resistance is anticipated. Herbicide resistance testing is essential for the detection of evolving weed resistance issues and to inform effective management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Bromus , Cicloexanonas , Herbicidas , Propionatos , Quinoxalinas , Humanos , Mutação , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Poaceae , Proteínas de Plantas/genética
2.
Phytopathology ; 112(2): 422-434, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34058860

RESUMO

Peronospora tabacina is an obligate parasite that causes blue mold of tobacco. The pathogen reproduces primarily by sporangia, whereas the sexual oospores are rarely observed. A collection of 122 isolates of P. tabacina was genotyped using nine microsatellites to assess the population structure of individuals from subpopulations collected from central, southern, and western Europe; the Middle East; Central America; North America; and Australia. Genetic variations among the six subpopulations accounted for ∼8% of the total variation, including moderate levels of genetic differentiation, high gene flow among these subpopulations, and a positive correlation between geographic and genetic distance (r = 0.225; P < 0.001). Evidence of linkage disequilibrium (P < 0.001) showed that populations contained partially clonal subpopulations but that subpopulations from Australia and Mediterranean Europe did not. High genetic variation and population structure among samples could be explained by continuous gene flow across continents via infected transplant exchange and/or long-distance dispersal of sporangia via wind currents. This study analyzed the most numerous P. tabacina collection and allowed conclusions regarding the migration, mutation, and evolutionary history of this obligate biotrophic oomycete. The evidence pointed to the species origin in Australia and identified intracontinental and intercontinental migration patterns of this important pathogen.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Peronospora , Fluxo Gênico , Variação Genética , Repetições de Microssatélites/genética , Peronospora/genética , Doenças das Plantas/parasitologia , /genética
3.
Front Microbiol ; 12: 686759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335513

RESUMO

Downy mildews caused by obligate biotrophic oomycetes result in severe crop losses worldwide. Among these pathogens, Pseudoperonospora cubensis and P. humuli, two closely related oomycetes, adversely affect cucurbits and hop, respectively. Discordant hypotheses concerning their taxonomic relationships have been proposed based on host-pathogen interactions and specificity evidence and gene sequences of a few individuals, but population genetics evidence supporting these scenarios is missing. Furthermore, nuclear and mitochondrial regions of both pathogens have been analyzed using microsatellites and phylogenetically informative molecular markers, but extensive comparative population genetics research has not been done. Here, we genotyped 138 current and historical herbarium specimens of those two taxa using microsatellites (SSRs). Our goals were to assess genetic diversity and spatial distribution, to infer the evolutionary history of P. cubensis and P. humuli, and to visualize genome-scale organizational relationship between both pathogens. High genetic diversity, modest gene flow, and presence of population structure, particularly in P. cubensis, were observed. When tested for cross-amplification, 20 out of 27 P. cubensis-derived gSSRs cross-amplified DNA of P. humuli individuals, but few amplified DNA of downy mildew pathogens from related genera. Collectively, our analyses provided a definite argument for the hypothesis that both pathogens are distinct species, and suggested further speciation in the P. cubensis complex.

4.
Front Plant Sci ; 11: 943, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719698

RESUMO

Microthlaspi erraticum is widely distributed in temperate Eurasia, but restricted to Ca2+-rich habitats, predominantly on white Jurassic limestone, which is made up by calcium carbonate, with little other minerals. Thus, naturally occurring Microthlaspi erraticum individuals are confronted with a high concentration of Ca2+ ions while Mg2+ ion concentration is relatively low. As there is a competitive uptake between these two ions, adaptation to the soil condition can be expected. In this study, it was the aim to explore the genomic consequences of this adaptation by sequencing and analysing the genome of Microthlaspi erraticum. Its genome size is comparable with other diploid Brassicaceae, while more genes were predicted. Two Mg2+ transporters known to be expressed in roots were duplicated and one showed a significant degree of positive selection. It is speculated that this evolved due to the pressure to take up Mg2+ ions efficiently in the presence of an overwhelming amount of Ca2+ ions. Future studies on plants specialized on similar soils and affinity tests of the transporters are needed to provide unequivocal evidence for this hypothesis. If verified, the transporters found in this study might be useful for breeding Brassicaceae crops for higher yield on Ca2+-rich and Mg2+ -poor soils.

5.
PLoS One ; 9(10): e109766, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329308

RESUMO

Pseudoperonospora cubensis, an obligate biotrophic oomycete causing devastating foliar disease in species of the Cucurbitaceae family, was never reported in seeds or transmitted by seeds. We now show that P. cubensis occurs in fruits and seeds of downy mildew-infected plants but not in fruits or seeds of healthy plants. About 6.7% of the fruits collected during 2012-2014 have developed downy mildew when homogenized and inoculated onto detached leaves and 0.9% of the seeds collected developed downy mildew when grown to the seedling stage. This is the first report showing that P. cubensis has become seed-transmitted in cucurbits. Species-specific PCR assays showed that P. cubensis occurs in ovaries, fruit seed cavity and seed embryos of cucurbits. We propose that international trade of fruits or seeds of cucurbits might be associated with the recent global change in the population structure of P. cubensis.


Assuntos
Cucurbitaceae/microbiologia , Transmissão de Doença Infecciosa , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Sementes/microbiologia , Frutas/microbiologia
6.
Genome Biol Evol ; 6(8): 2034-49, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25062916

RESUMO

Smut fungi are well-suited to investigate the ecology and evolution of plant pathogens, as they are strictly biotrophic, yet cultivable on media. Here we report the genome sequence of Melanopsichium pennsylvanicum, closely related to Ustilago maydis and other Poaceae-infecting smuts, but parasitic to a dicot plant. To explore the evolutionary patterns resulting from host adaptation after this huge host jump, the genome of Me. pennsylvanicum was sequenced and compared with the genomes of U. maydis, Sporisorium reilianum, and U. hordei. Although all four genomes had a similar completeness in CEGMA (Core Eukaryotic Genes Mapping Approach) analysis, gene absence was highest in Me. pennsylvanicum, and most pronounced in putative secreted proteins, which are often considered as effector candidates. In contrast, the amount of private genes was similar among the species, highlighting that gene loss rather than gene gain is the hallmark of adaptation after the host jump to the dicot host. Our analyses revealed a trend of putative effectors to be next to another putative effector, but the majority of these are not in clusters and thus the focus on pathogenicity clusters might not be appropriate for all smut genomes. Positive selection studies revealed that Me. pennsylvanicum has the highest number and proportion of genes under positive selection. In general, putative effectors showed a higher proportion of positively selected genes than noneffector candidates. The 248 putative secreted effectors found in all four smut genomes might constitute a core set needed for pathogenicity, whereas those 92 that are found in all grass-parasitic smuts but have no ortholog in Me. pennsylvanicum might constitute a set of effectors important for successful colonization of grass hosts.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Ustilaginales/genética , Proteínas Fúngicas/análise , Deleção de Genes , Duplicação Gênica , Genômica , Filogenia , Pseudogenes , Seleção Genética , Ustilaginales/patogenicidade
7.
PLoS One ; 7(11): e44863, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166582

RESUMO

Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.


Assuntos
Cucurbitaceae/microbiologia , Interações Hospedeiro-Patógeno , Oomicetos/citologia , Filogenia , República Tcheca , Oomicetos/genética , Especificidade da Espécie , Esporângios/anatomia & histologia
8.
Mycologia ; 104(3): 633-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22241615

RESUMO

Ten polymorphic microsatellite loci for the obligate biotrophic, oomycete pathogen of tobacco, Peronospora tabacina, were identified from a small insert genomic library enriched for GT motifs. Eighty-five percent of the 162 loci identified were composed of dinucleotide repeats, whereas only 4% and 11% were tri-and tetra-nucleotide repeats respectively. About 82% of all the microsatellites were perfect and within the library; only about 7% of the loci were duplicated. Primers were designed for 63 loci; 10 loci were polymorphic, 19 were monomorphic and 34 either failed to amplify or produced ambiguous/inconsistent results. The 10 polymorphic loci were characterized with 44 isolates of P. tabacina collected from tobacco plants growing in Europe, the Near East and North and South America. The number of alleles per locus was either three or four with a mean of 3.2, and the mean number of genotypes per locus was 3.6. Observed heterozygosity was 0.32-0.95, whereas expected heterozygosity was 0.44-0.69 for these loci. All loci except PT054 did not conform to the Hardy-Weinberg distribution. Polymorphic information content (PIC) for the loci was 0.35-0.69 with a mean of 0.50. These microsatellite loci provide a set of markers sufficient to perform genetic diversity and population studies of P. tabacina, and possibly other species of Peronospora.


Assuntos
Repetições de Microssatélites/genética , Peronospora/genética , Polimorfismo Genético/genética , Alelos , Primers do DNA/genética , Repetições de Dinucleotídeos , Loci Gênicos/genética , Biblioteca Genômica , Genótipo , Heterozigoto , Doenças das Plantas/parasitologia
9.
Plant Dis ; 96(1): 55-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30731856

RESUMO

Pseudoperonospora cubensis causes some of the most devastating diseases of cucurbitaceous crops, while P. humuli is an important pathogen of hop (Cannabaceae). Although parasitic to different Angiosperm orders, these pathogens are highly similar, both in morphology and based on molecular comparisons. Considering the close relationship of P. humuli and P. cubensis, it was hypothesized that cross infectivity of the pathogens between their optimum hosts might be possible. Two strains of P. humuli and one of P. cubensis used in this study were able to reproduce on the two wild cucurbit relatives Bryonia dioica and Sicyos angulatus. Interestingly, limited infectivity of the P. cubensis strain to hop was also observed, and the P. humuli strain was also able to infest Cucumis sativus. The cross infections were verified by comparing the nuclear ribosomal-internal transcribed spacer sequences of newly produced sporangiophores from the different hosts. Morphologically the two pathogens could be distinguished by statistical analyses on their original hosts but these differences diminished on some alternate hosts. The ability of P. cubensis to infest the perennial Bryonia dioica and Humulus lupulus might offer a limited possibility for overwintering in temperate regions and needs to be evaluated in future studies. The ability of P. humuli to complete its life cycle on all the tested cucurbits provides evidence that the host jump across orders may continue and points to the high virulence potential of this pathogen.

10.
Fungal Biol ; 115(2): 102-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21315308

RESUMO

Bremia lactucae is one of the most important pathogens in lettuce production. Recent molecular studies revealed considerable genetic variation in this species complex. However, only few accessions from the same host have been examined for most species and no study investigating the morphological distinctiveness of phylogenetic lineages of Bremia has so far been reported. Thus it is believed that morphological species delimitation in Bremia is not feasible. In the present study, multiple accessions of neglected species, which had been described decades ago, but have not been widely accepted, were investigated, considering both multi-gene phylogenies and morphological characters. All previously described species from host genera other than Lactuca investigated, Bremia microspora, Bremia ovata, Bremia saussureae, and Bremia sonchicola, could be confirmed as distinct, host-specific entities. Also, morphological characteristics of their conidiophores and conidia allowed delimitation of these species. Therefore, not only the wide species concept to merge all Bremia species on the Asteraceae under B. lactucae is inappropriate but also their delimitation on the basis of morphological characters seems feasible. In addition, it has been shown that Bremia elliptica is phylogenetically distinct from the other species infecting the genus Lactuca, B. lactucae. It is therefore concluded that B. lactucae is most likely limited to Lactuca sativa and closely-related species, and that most species of Bremia are highly host specific. This finding might stimulate the search for durable resistance genes in genera closely related to the genus Lactuca and in divergent species of the genus itself.


Assuntos
Evolução Molecular , Variação Genética , Oomicetos/classificação , Oomicetos/crescimento & desenvolvimento , Asteraceae/microbiologia , DNA Fúngico/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Oomicetos/genética , Oomicetos/isolamento & purificação , Filogenia , Doenças das Plantas/microbiologia
11.
IMA Fungus ; 2(2): 163-71, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22679601

RESUMO

Pathogens belonging to the Oomycota, a group of heterokont, fungal-like organisms, are amongst the most notorious pathogens in agriculture. In particular, the obligate biotrophic downy mildews and the hemibiotrophic members of the genus Phytophthora are responsible for a huge variety of destructive diseases, including sudden oak death caused by P. ramorum, potato late blight caused by P. infestans, cucurbit downy mildew caused by Pseudoperonospora cubensis, and grape downy mildew caused by Plasmopara viticola. About 800 species of downy mildews and roughly 100 species of Phytophthora are currently accepted, and recent studies have revealed that these groups are closely related. However, the degree to which Phytophthora is paraphyletic and where exactly the downy mildews insert into this genus in relation to other clades could not be inferred with certainty to date. Here we present a molecular phylogeny encompassing all clades of Phytophthora as represented in a multi-locus dataset and two representatives of the monophyletic downy mildews from divergent genera. Our results demonstrate that Phytophthora is at least six times paraphyletic with respect to the downy mildews. The downy mildew representatives are consistently nested within clade 4 (contains Phytophthora palmivora), which is placed sister to clade 1 (contains Phytophthora infestans). This finding would either necessitate placing all downy mildews and Phytopthora species in a single genus, either under the oldest generic name Peronospora or by conservation the later name Phytophthora, or the description of at least six new genera within Phytophthora. The complications of both options are discussed, and it is concluded that the latter is preferable, as it warrants fewer name changes and is more practical.

12.
Mycol Res ; 113(5): 532-40, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19272326

RESUMO

The downy mildew pathogen of basil (Ocimum spp.) has caused considerable damage throughout the past five years, and an end to the epidemics is not in sight. The downy mildew of coleus (Solenostemon spp.) is just emerging and here we report that it was very recently introduced into Germany. Although it has been recognised that these pathogens are a major threat, the identity of the pathogens is still unresolved, and so it is difficult to devise quarantine measures against them. Using morphological comparison and molecular phylogenetic reconstructions we confirmed in this study that the downy mildews of basil and coleus are unrelated to Peronospora lamii, which is a common pathogen of the weed Lamium purpureum. In addition, we conclude by the investigation of the type specimen of P. swingleii and downy mildew specimens on Salvia officinalis that the newly occurring pathogens are not identical to P. swingleii on Salvia reflexa. The taxonomy of the downy mildew pathogens of hosts from the Lamiaceae and, in particular, from the tribes Mentheae and Elsholtzieae, is discussed, and a new species is described to accommodate the downy mildew pathogen of basil and coleus, which is the first downy mildew pathogen known to be parasitic to hosts of the tribe Ocimeae.


Assuntos
Coleus/microbiologia , Ocimum basilicum/microbiologia , Peronospora/classificação , Peronospora/genética , Doenças das Plantas/genética , Salvia officinalis/microbiologia , Coleus/genética , Ocimum basilicum/genética , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...